• Welcome to Professional A2DGC Business
  • 011-43061583
  • info@a2dgc.com

The Sungrazers

27

Apr

The Sungrazers

Apr 27, 2024

Blog Credit : Trupti Thakur

Image Courtesy : Google

The Sungrazers – Comets

sungrazing comet is a comet that passes extremely close to the Sun at perihelion – sometimes within a few thousand kilometres of the Sun’s surface. Although small sungrazers can completely evaporate during such a close approach to the Sun, larger sungrazers can survive many perihelion passages. However, the strong evaporation and tidal forces they experience often lead to their fragmentation.

Up until the 1880s, it was thought that all bright comets near the Sun were the repeated return of a single sungrazing comet. Then, German astronomer Heinrich Kreutz and American astronomer Daniel Kirkwood determined that, instead of the return of the same comet, each appearance was a different comet, but each were related to a group of comets that had separated from each other at an earlier passage near the Sun (at perihelion).] Very little was known about the population of sungrazing comets until 1979 when coronagraphic observations allowed the detection of sungrazers. As of October 21, 2017, there are 1495 known comets that come within ~12 solar radii (~0.055 AU). This accounts for nearly one third of all comets. Most of these objects vaporize during their close approach, but a comet with a nucleus radius larger than 2–3 km is likely to survive the perihelion passage with a final radius of ~1 km.

Sungrazer comets were some of the earliest observed comets because they can appear very bright. Some are even considered Great Comets. The close passage of a comet to the Sun will brighten the comet not only because of the reflection off the comet nucleus when it is closer to the Sun, but the Sun also vaporizes a large amount of gas from the comet and the gas reflects more light. This extreme brightening will allow for possible naked eye observations from Earth depending on how volatile the gases are and if the comet is large enough to survive perihelion. These comets provide a useful tool for understanding the composition of comets as we observe the outgassing activity and they also offer a way to probe the effects solar radiation has on other Solar System bodies.

 Sungrazing groups

Kreutz Sungrazers

The most famous sungrazers are the Kreutz Sungrazers, which all originate from one giant comet that broke up into many smaller comets during its first passage through the inner Solar System. An extremely bright comet seen by Aristotle and Ephorus in 371 BC is a possible candidate for this parent comet.

The Great Comets of 1843 and 1882, Comet Ikeya–Seki in 1965 and C/2011 W3 (Lovejoy) in 2011 were all fragments of the original comet. Each of these four was briefly bright enough to be visible in the daytime sky, next to the Sun, 1882’s comet outshining even the full moon.

In 1979, C/1979 Q1 (SOLWIND) was the first sungrazer to be spotted by US satellite P78-1, in coronagraphs taken on 30 and 31 Aug 1979.

Apart from Comet Lovejoy, none of the sungrazers seen by SOHO has survived its perihelion passage; some may have plunged into the Sun itself, but most are likely to have simply evaporated away completely.

Other sungrazers

About 83% of the sungrazers observed with SOHO are members of the Kreutz group. The other 17% contains some sporadic sungrazers, but three other related groups of comets have been identified among them: the Kracht, Marsden and Meyer groups. The Marsden and Kracht groups both appear to be related to Comet 96P/Machholz. These comets have also been linked to several meteor streams, including the Daytime Arietids, the delta Aquariids, and the Quadrantids. Linked comet orbits suggest that both Marsden and Kracht groups have a small period, on the order of five years, but the Meyer group may have intermediate- or long-period orbits. The Meyer group comets are typically small, faint, and never have tails. The Great Comet of 1680 was a sungrazer and while used by Newton to verify Kepler’s equations on orbital motion, it was not a member of any larger groups. However, comet C/2012 S1 (ISON), which disintegrated shortly before perihelion, had orbital elements similar to the Great Comet of 1680 and could be a second member of the group.

Origin of sungrazing comets

Studies show that for comets with high orbital inclinations and perihelion distances of less than about 2 astronomical units, the cumulative effect of gravitational perturbations over many orbits is adequate to reduce the perihelion distance to very small values. One study has suggested that Comet Hale–Bopp has about a 15% chance of eventually becoming a sungrazer.

Role in solar astronomy

The motion of tails of sungrazers that survive perihelion (such as Comet Lovejoy) can provide solar astronomers with information about the structure of the solar corona, particularly the detailed magnetic structure.

 

 

Blog By : Trupti Thakur